Phase Space Isometries and Equivariant Localization of Path Integrals in Two Dimensions

نویسندگان

  • Richard J. Szabo
  • Gordon W. Semenoff
چکیده

By considering the most general metric which can occur on a contractable two dimensional symplectic manifold, we find the most general Hamiltonians on a two dimensional phase space to which equivariant localization formulas for the associated path integrals can be applied. We show that in the case of a maximally symmetric phase space the only applicable Hamiltonians are essentially harmonic oscillators, while for non-homogeneous phase spaces the possibilities are more numerous but ambiguities in the path integrals occur. In the latter case we give general formulas for the Darboux Hamiltonians, as well as the Hamiltonians which result naturally from a generalized coherent state formulation of the quantum theory which shows that again the Hamiltonians so obtained are just generalized versions of harmonic oscillators. Our analysis and results describe the quantum geometry of some two dimensional systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant Localization of Path Integrals

We review equivariant localization techniques for the evaluation of Feynman path integrals. We develop systematic geometric methods for studying the semi-classical properties of phase space path integrals for dynamical systems, emphasizing the relations with integrable and topological quantum field theories. Beginning with a detailed review of the relevant mathematical background – equivariant ...

متن کامل

On Exact Evaluation of Path Integrals

We develop a general method to evaluate exactly certain phase space path integrals. Our method is applicable to hamiltonians which are functions of a classical phase space observable that determines the action of a circle on the phase space. Our approach is based on the localization technique, originally introduced to derive the Duistermaat-Heckman integration formula and its path integral gene...

متن کامل

Preprint JINR E2-93-194 Antibrackets and localization of (path) integrals.

The transparent way for the invariant (Hamiltonian) description of equivariant localization of the integrals over phase space is proposed. It uses the odd symplectic structure, constructed over tangent bundle of the phase space and permits straightforward generalization for the path integrals. Simultaneously the method of supersymmetrization for a wide class of the Hamiltonian systems is derive...

متن کامل

On Quantum Integrability and the Lefschetz Number

Certain phase space path integrals can be evaluated exactly using equivariant cohomology and localization in the canonical loop space. Here we extend this to a general class of models. We consider hamiltonians which are a priori arbitrary functions of the Cartan subalgebra generators of a Lie group which is defined on the phase space. We evaluate the corresponding path integral and find that it...

متن کامل

Localization and Diagonalization a Review of Functional Integral Techniques for Low-dimensional Gauge Theories and Topological Field Theories

We review localization techniques for functional integrals which have recently been used to perform calculations in and gain insight into the structure of certain topological eld theories and low-dimensional gauge theories. These are the functional integral counterparts of the Mathai-Quillen formalism, the Duistermaat-Heckman theorem, and the Weyl integral formula respectively. In each case, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994